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SOME GENERALIZED SEQUENCE SPACES DEFINED BY A
MUSIELAK-ORLICZ FUNCTION OVER n-NORMED SPACES
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ABSTRACT. In the present paper we introduce some sequence spaces defined by a Musielak-
Orlicz function M = (Mjy) over n-normed spaces. We study some topological properties and
prove some inclusion relations between these spaces.
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1. INTRODUCTION

The concept of 2-normed spaces was initially developed by Géhler [2] in the mid of 1960’s,
while that of n-normed spaces one can see in Misiak [12]. Since then, many others have studied
this concept and obtained various results, see Gunawan ([3], [4]) and Gunawan and Mashadi [5]
and references therein.

Let w be the set of all sequences of real or complex numbers and [, ¢ and ¢y be the sequence
spaces of bounded, convergent and null sequences x = (zy,), respectively.

A sequence x € [, is said to be almost convergent if all Banach limits of x coincide. Lorentz
[8] proved that

1 n
¢ = {x = (zg) : lim — Zxk+5 exists, uniformly in s}.
"
Maddox ([9], [10]) has defined z to be strongly almost convergent to a number L if

R : :
hrrln - Z |zk+s — L] = 0, uniformly in s.
k=1
Let p = (pg) be a sequence of strictly positive real numbers. Nanda [14] has defined the following
sequence spaces :

[¢,p] = {x = (x) : liTan % kznzl |zgt+s — LIP* =0, uniformly in 3},
[¢,plo = {iL‘ = (z1) : lim 1 Zn: |zg4s|P* =0, uniformly in s}
mn k=1
and

. 1 ¢
eploo = {0 = (@) s sup — 3 fops* < o0 ).
s, T 1
The notion of difference sequence spaces was introduced by Kizmaz [6], who studied the
difference sequence spaces loo(A), ¢(A) and ¢o(A). The notion was further generalized by Et
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and Colak [1] by introducing the spaces lo(A™), ¢(A™) and ¢o(A™). Let m, r be non-negative
integers, then for Z = [, ¢ and ¢y, we have sequence spaces,

Z(A") ={z = (z) € w: (Axy) € Z},

where Az = (AMxy) = (A™ to,— AT 1z, ) and Az = 2y, for all k € N, which is equivalent
to the following binomial representation

A:’nxk = Z(](_l)v < Z ) Lk4rv-

Taking m = r = 1, we get the spaces loo(A), ¢(A) and ¢p(A) introduced and studied by
Kizmaz [6].

An Orlicz function M is a function, which is continuous and convex with M (0) = 0, M(q) > 0
for ¢ > 0 and M(q) — o0 as ¢ — oc.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to define the sequence space,
then the space

by = {x:(xk) 6w:§3M(|xk|> <o<>},
k=1 P

which is called as an Orlicz sequence space. The space £, is a Banach space with the norm

||| = inf{p >0 iM(’xp"f’) < 1}.
k=1

It is shown in [10] that every Orlicz sequence space £j; contains a subspace isomorphic to
ly(p > 1). The Ay-condition is equivalent to M (Lxz) < kLM (z) for all values of z > 0, and for
L>1.

A sequence M = (M},) of Orlicz functions is called a Musielak-Orlicz function see ([11],[13]).
A sequence N = (Ny) defined by

Ni(v) = sup{|vju — (M) (u) : u >0}, k=1,2,---

is called the complementary function of a Musielak-Orlicz function M. For a given Musielak-
Orlicz function M, the Musielak-Orlicz sequence space tas and its subspace ha are defined as
follows

tm :{xew:IM(cx) < oo for some c>()},
hM:{ZL‘Gw:IM(c;U)<oo for all c>0},
where I is a convex modular defined by

Im(x) = My(wp), @ = (zx) € tar.
k=1

We consider ¢t equipped with the Luxemburg norm
x| = inf{k >0 IM<%) < 1}
or equipped with the Orlicz norm
||z||° = inf {%(1 + IM(ka:)) ck > 0}.

For more details about sequence spaces see ([15], [16], [17], [18]) and many others.
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2. PRELIMINARIES

Let n € N and X be a linear space over the field K, where K is field of real or complex
numbers of dimension d, where d > n > 2. A real valued function ||-,--- ,-|| on X™ satisfying
the following four conditions:

(1) ||z1, 22, ,zn|| = 0 if and only if x1,z9,- - , x, are linearly dependent in X;
(2) ||z1,x2,- -+, p]| is invariant under permutation;
(3) |axi, z2, - ,xu|| = |al||z1, z2, - -, 2p]|| for any « € K, and
(4) ||l’ —|—.T,,l‘2, T 7$n|| < ||$,$2, T ,:L'n|| + ||$/7m27 U ’x?’LH
is called a n-norm on X and the pair (X, ||-,--- ,||) is called a n-normed space over the field K.
For example, we may take X = R" being equipped with the n-norm ||z1,z9, - ,x,||g = the
volume of the n-dimensional parallelepiped spanned by the vectors x1, 2, - - - , x, which may be
given explicitly by the formula
21, 22, -+ @n||p = | det(zi;)],
where z; = (241, %2, -+, Tin) € R™ for each i = 1,2,--- ,n and ||.||g is the n-norm on Euclidean
space R™. Let (X,||,---,-||) be an n-normed space of dimension d > n > 2 and {a1,ag, -+ ,an}
be linearly independent set in X. Then the following function ||-,--- ,||occ on X"~ ! defined by
||$1,.I'2, T axn—lHoo = maX{bexZ?' n 7$n—17ai|| D= 1727 e ,7’L}
defines an (n — 1)-norm on X with respect to {aj,ag, - ,an}.
A sequence () in a n-normed space (X, ||-,--- ,-||) is said to converge to some L € X if
klim ||z — Ly 21, ,2n—1|| =0 for every z1,---,z,-1 € X.
—00
A sequence (z) in a n-normed space (X, |[|-,---,-||) is said to be Cauchy if
lim ||z —2p, 21, -+, 2n-1]| =0 for every z1,---, 2,1 € X.

k,p—00

If every Cauchy sequence in X converges to some L € X, then X is said to be complete with
respect to the n-norm. Any complete n-normed space is said to be n-Banach space.
Let X be a linear metric space. A function p : X — R is called paranorm, if
(1) p(z) >0, for all z € X;
(2) p(—z) = p(x), for all z € X;
(3) p(z+y) < p(x) +p(y), for all 2,y € X;
(4) if (oy,) is a sequence of scalars with o, — o asn — oo and (x,,) is a sequence of vectors
with p(z, — ) — 0 as n — oo, then p(opz, —ox) — 0 as n — oc.
A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is
called a total paranormed space. It is well known that the metric of any linear metric space is
given by some total paranorm (see [19], Theorem 10.4.2, p.183).
Let M = (M}) be a Musielak-Orlicz function, (X, ||-,---,-||) be a n-normed space, p =
(pr) be bounded sequence of strictly positive real numbers and u = (ug) be any sequence of
strictly positive real numbers. By S(n — X) we denote the space of all sequences defined over

(X, |]-,--+,-|])- In the present paper we define the following sequence spaces:
[éaMaU,pv”'v"' a||} (A;n) =
1< A™ L i
= {x = (z) € S(n — X) :1imﬁz [Mk<||%,21,”' ’Zn—lHH K _o,
n

k=1

uniformly in s, for some L and p > 0 },

EMaup ol A7) =
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1 & AT P
= {x:(mk) €S(n—X):lim- g [Mk<\|w,zl,~- 7Zn—1H):| * =0,
TN P

uniformly in s, for p > 0 },

and

eMoup o] A7) =

1 & AT P
= {x = (z) e S(n—X): SUPEZ [Mk<\\w+%,z1,~- ’Z"_IH)} "< oo, for p> 0}.
S k=1

If we take M(x) = x, we get
[Eup el A7) =
AMxp. o — L p
—{z= () €S- X) lm.§j(9£—ﬁi——ﬂa,~¢%u0k=m

uniformly in s, for some L and p > 0 },

{évua%”'?”'v"qo(Am =
1< A P
k=1

uniformly in s, for p > 0 },

and
Il ol =
up A" l‘k+5 Pk
:{x:(xk)ES(n— s sup — Z( ,zl,---,zn,1||> < oo, for p>0}.
7,,7
If we take p = (pg) = 1 for all k € N, we get
& M|l @) =
1 Alzpis— L
= {:1: = (o) € S(n— X) :lm~ Y [Mk<HM,z1,--- ,zn_luﬂ —0,
T
uniformly in s, for some L and p > 0 },
|:6,M,’U,, H7 7H:|0(A?1) =
1 ATy
—{o = (@) €S- X) itim = > [ M (|22 2zl =0,
K Bt p
uniformly in s, for p > 0 },
and

[é,M’u, [ "HLO(AT) -

1 iU ukAm$k+5
= {x = (z) € S(n — X) :SUPEZ [Mk(Hrf,zl,--- ,zn,1]|)} < oo, for p> 0}.
ST =1
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The following inequality will be used throughout the paper. If 0 < p, < suppr = H, K =
max(1,27~1) then
e+ bul? < K{layl? + orf) 1)
for all k and ay, by € C. Also |aP* < max(1,|a|") for all a € C.
The main aim of this paper is to study some sequence spaces defined by a Musielak-Orlicz
function over m-normed spaces. We also make an effort to study some topological properties
and some inclusion relations between these spaces.

3. MAIN RESULTS

Theorem 3.1. Let M = (My) be a Musielak-Orlicz function, p = (px) be bounded sequence of
positive real numbers and uw = (uy) be any sequence of strictly positive real numbers. Then the

spaces & My u,p, |-+ | (AR, & Mwp. [l ol (A and & Mup, |1l (A7)

are linear spaces.

Proof. Let x = (x), vy = (yr) € [é,M,u,p, IDREE ,~||]O(AT) and «, f be any scalars. Then
there exist positive numbers p; and ps such that
1 & Al P
lim =" [Mk(HM,ZL“' ;anl||>i| )
T4 P1
and
1< [ ( WA s P
lim — 7zl,~-,z_1 )] =0.
AP (e -

Let p3 = max(2|a|p1,2|8|p2). Since M = (M) is non-decreasing convex function and so by
using inequality (1), we have

1 < AT f2
1 Mk uk (axk—i-s +ﬂyk+s) 2y, 7Zn—1H k <
n P3
k=1
1 < up AN ar up A’ Pk
<=y [Mk<||w’zl’... || + Hkriﬁykﬂ,zl’... ,an1||>} <
Uit P3 P3
1 up Ay, up ATy, Pk
< S M (IR e R ) <
[ P1 P2
1 up Al xy, Pk
SKfz[Mk<||T7+S7zl7“'7Zn—1||)] +
Ut P1
1< up AM Pk
+E=3 [Mk(|‘kr7%7217... ,Zn_1‘|>] 0
[ P2
as n — oo, uniformly in s.
So that ax + fy € [é,/\/l,u,p, |-y ,-||}O(A,T,”). Thus [é,/\/l,u,p, |- ,-||}0(A,’,”) is a linear
space. Similarly, we can prove that [é, Mu,p, || ,HLO(AT) and [é,/\/l,u,p, [|-,--- ,||} (AT)
are linear spaces. [l

Theorem 3.2. Let M = (My,) be a Musielak-Orlicz function, p = (px) be a bounded sequence
of positive real numbers and uw = (ug) be any sequence of strictly positive real numbers. Then
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¢, Mou,py ||y ,-H}O(A;”) is a paranormed space with respect to the paranorm defined by

g(x) = inf {p : (}72 [ (15 )] ) <),

k=1

where H = max (1, sup, pr < 00).

Proof. Clearly g(z) >0 for z = (xy) € [é,./\/l,u,p, |- ,-H]O(AT). Since My (0) = 0, we get

9(0) = 0.
Conversely, suppose that g(z) = 0, then

A A P\ 7
inf {p (=30 [M ()2 )] )T < 1) =0
i P
This implies that for a given e > 0, there exists some p.(0 < p. < €) such that

L

1 & AT P
(,Z [Mk<HM>Zl7“' ,Zn—1\|>] k)H <1
n Pe

k=1

Thus

1 < A Pr\ &
(52 (P2 )] ) <

k=1
1 iU UkATl"k—I—s Pk %

S <7Z|:Mk<”77217'”7Zn—1‘|):| > Sla
4 Pe

for each n. Suppose that xy # 0 for each k£ € N. This implies that upA'xrys # 0, for each

k,s € N. Let € — 0, then ]|%f’“+s,z1,~- , Zn—1|| — oo. It follows that
1 iU ukAmmk Pk +
<fz {Mkmriﬂyzh... ,Zn—lHﬂ )H — 00
= €

which is a contradiction. Therefore, uyA™ x4 = 0 for each k£ and thus zy = 0 for each k € N.
Let p1 > 0 and p2 > 0 be such that

n

1 IWANUE PE\ 77
<7Z|:Mk<‘| - +Sazla"'7zn71”):| >H§1
n P1

k=1

and
1

1< up A™ Dk
(=37 [pa (= e ;y’““,zl,.--,zn_ln)] )" <1
2

N k=1
for each n. Let p = p1 + p2. Then by using Minkowski’s inequality, we have

1< A™ Pr\ &
(7Z[Mk(||uk r(xk+s+yk+s)7zl’_”’%HH)] k>H§
= p
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1< AT AT PEN 71
< (*Z{Mkmw r Thts + ryk+8721,-~-,zn_1\|>] k)HS
Ut p1+ p2
1 iU ukA LThts
< (7 |: ( Z17...72_1>+
nkz:: P iU ol
up A’ Pk\
+ p2 Mk(” k r yk—"_s,Zl,"' 7Zn71|‘):| )H S
p1+ p2 P2
1 iU ukAmxk PR\ 77
(i) (G 20 (1= mcal)[7) 7+
pr+p2/ A= p1
1 o AM Pr\ 7
( = )(fz[M’“(HM,ZL...,zn_ly\)} ’“)Hgl.
pr+p2/ A= P2
Since p’s are non-negative, so we have
y (IS AT AT PrY 7
gty = inf{p%:<72 Mk(HUk r Thts T Uk Tyk+s,z1,---,zn_1H>} k)HSl}S
it P
1 A™ Py L
< inf{le :<72 (Huk Thts TR 7277,—1”):| k>H < 1}—|—
M=t
mo 1 I A™ P L
N inf{pQH :<*Z Mk(HMazlf" ,zn_lllﬂ ’“)H 31}.
it P2

Therefore,
9(z +y) < g(z) + 9(y).

Finally, we prove that the scalar multiplication is continuous. Let A be any complex number.
By definition,

o) = int {8+ (130 [an (10N o)) <)

Then

g() = inf {(AIDF - (;Z [ (1R )] <),

t
k=1

where t = ‘—f\|. Since |[A[P» < max(1, |A[S"PPr), we have

So, the fact that scalar multiplication is continuous follows from the above inequality. This
completes the proof of the theorem. O

Theorem 3.3. Let M = (My) be a Musielak-Orlicz function. Then the following statements
are equivalent
(i) [é,u,p, H7 e 7”]00(A:‘n> - [é,./\/l,u,p, H7 T H} OO(AT)J
(Z'Z') [é,u,p, H? T H:|0(A7T"n) C [é,./\/l,u,p, Hﬂ T H:|OO(A:"YL)}
n

1 "
(iii) supgz[Mk(t)]p’“ < 00, where t = H%,zl, e Zpe|] > 0.
T =1
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Proof. (i) = (ii) is obvious, since [@,u,p,u.,-.. ,-||}0(A;n) c [e,u,p,u.,-.. ,.H] (A,
(i) = (ii). Suppose [e.up,[l-- oll] (AF) © [&Moup, [l ]| (A7) and et (i)
does not hold. Then for some ¢ > 0 =
1 n
sup — Y _[Mj,(£)]”* = oo,
T =1

Define = = (zy,) by
_{ i, 1<k<m, i=12, ..

Then @ = (z) € [&,0p, [l lI] (AP) but @ = (24) & [&; Mou,p |-+ ll] (A which

- H

0
contradicts (ii). Hence (iii) must hold.
(iii) = (i). Suppose x = (x}) € [é, Uy Py ||y ,H} (AT™)

and @ = (a1) & [ M,u,ps [l ol (AF),
Then

1 < up Ay, Pk
sup 23 g (| BT )] = o 3
sn p

Let t = H%,zl, .-+, zp—1|| for each k and fixed s, then by (3)

which contradicts (iii). Hence (i) must hold. O

Theorem 3.4. Let 1 < pp < suppr < oo. Then the following statements are equivalent
k

(i) [e Mol oAl (A1) € [eup Il ol am),
(ii) [& Mol oIl (AP € [eup o oll](am),
n
(iii) inf 717 SO >0, >0,
n
k=1

Proof. (i) = (ii) is obvious.

(ii) = (i) Suppose [é,M,u,p,H.,... ,.H}O(A;ﬂ) c [e,u,p,u.,-.- I (A™) and let (iii) does
not hold. Then -

inf 717 i[Mk(t)]pk —0, t>0. (4)

We can choose an index sequence (7;) such that

1
= M) <iTh i=1,2, .
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Define the sequence x = (zy) by

(i, 1<k<m, i=1,2, ..
w={" k>
Thus by (4), @ = (e2) € [&Mwp [l ] (A) but @ = (@) € |eup ]l ] _(AP)
which contradicts (ii). Hence (iii) must hold.
(ii)) = (i) Let 2 = () € [& M u,p, ||+ ||| (AF). That is,
1< AT p
lim — Z [Mk(HM,zl, e ,%—1“)} f o 0, uniformly in s. (5)
TN P
Suppose (iii) hold and = = (z}) & [é,u,p, IDREE ,-H]O(A;”). Then for some number ¢y > 0
and index 79, we have ||%,zl, -+ Zn—1|| > €0, for some s > s’ and 1 < k < 1. Therefore

)
up AMx Pk
[Mj(e0)]* < [Mk(H%’Zb'“ ,Zn71||)}

and consequently by (5)

1
lim = "[Mj(e0)]P* =0,
T k=1
which contradicts (iii). Hence {é,/\/l,u,p, [, ||}O(A;n) - {é,u,p, IEEEIN H]O(AT) O

Theorem 3.5. Let M = (My,) be a Musielak-Orlicz function. Let 1 < py < supp < oco. Then
k

(& Mol oIl (A € [eup ] AT
holds if and only if
1
lim — M. (t)]PF =00, t>0. 6
m = > (M) ()
Proof. Suppose |¢é, M, u,p,||-,--- ,H} (AT C [é,u,p,H~,-~- Nl O(A,ﬁn) and let (6) does not
oo
hold. Therefore there is a number ¢y > 0 and an index sequence (7;) such that
1
— > [My(to)]?* <N < o0, i=12,.. (7)
¢ k=1

Define the sequence z = () by

to, 1§k§7727 221727
€T =
@ ={ "y, k>
Clearly, @ = (zi) € | Mup, [l oll] (AF) but @ = (@) & [ u,p, [l || (A
Hence (6) must hold.
Conversely, if x = (xx) € [é,/\/l,u,p, IDEEE ,H] (A7), then for each s and 7
1 U ATy o Pk
EZ[MA@(H%,ZL.--,Z,HH)] <N < . (8)

k=1
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Suppose that z = (xy) ¢ [é, U, p, || ,'H}O(A;”). Then for some number ¢y > 0 there is a
number sg
Am
[ TS ezl > o, for s > s,
p
Therefore

up Az Pk
[Mi(e0)]?* < [Mk<!|%,21,“' ,Zn71||>} ’

and hence for each k and s we get

1
= [ Mi(eo)PF < N < o,
M=
for some N > 0, which contradicts (6). Hence
&Ml ol @A) S e up el AT,

O
Theorem 3.6. Suppose M = (My,) be a Musielak-Orlicz function and let 1 < pp, < supp < 0.
k

Then
up ol _Am < [e Moup, 1] am)
holds if and only if
1
lim = > " [My ()]s =0, ¢>0. (9)
TS
Proof. Let [é, Uy Py ||y ,HLO(AT) C [é,/\/l,u,p, |-~ ,-H}O(A,ﬁ”). Suppose that (9) does not
hold. Then for some ty > 0,
1
lim = > " [M, ()] = L # 0. (10)
T k=1

Define = = (x) by

for k=1,2,.... Then z = (a}) ¢ {é,/\/l,u,p, |- ,-H]O(AT) but
r = (xp) € [é, U, Py || ,||} (AT"). Hence (9) must hold.
o
Conversely, let = = (z) € [é,u,p, IDEEE ,||] (A"). Then for every k and s, we have
o
Am
|| e This o el € N < oo
P
Therefore A
u x P
(M (12 2zl < (VP
and . .
1 A" 1
lim~$° [Mk<||m,zl, . ,zn,lu)r'“ < lim— Y [My(N)]P* =0.
Kt p Kt
Hence x = (xp) € [é,M, U, p, || ,~|]}O(A;”). This completes the proof. O
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